
MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO
INSTITUTE OF INFORMATION & COMMUNICATION TECHNOLOGIES

ADVANCED DIGITAL SIGNAL PROCESSING

Lab 10: Multirate Digital Signal Processing

Objective

The objective of this lab is to alter the sampling rate of
signal.

1 Introduction

In many practical applications of digital signal pro-
cessing, one is faced with the problem of changing the
sampling rate of a signal, either increasing it or decreas-
ing it by some amount. The process of converting a sig-
nal from a given rate to a different rate is called sampling
rate conversion. In turn, systems that employ multiple
sampling rates in the processing of digital signals are
called multirate digital signal processing systems.

Let us think of an underlying (or original) analog sig-
nal xa(t) that was sampled using the sampling rate of
Fs = 1

T
samples/second to produce a discrete signal

x(n). The resulting digital signal x(n) is subsequently
filtered using a lowpass filter (LPF) with a cutoff fre-
quency of ωc.

Thus, the output signal y(n) has all its energy in the
band 0 ≤ ω ≤ ωc = 2πfc. According to the sampling
theorem, such a signal may be represented by the rate
of 2fc/T samples/second instead of its existing rate of
Fs =

1

T
. Note that |fc| ≤ 0.5. However, if fc ≪ 0.5, then

2fc/T ≪ Fs. Hence it would seem more advantageous to
lower the sampling frequency to a value closer to 2fc/T
and perform signal processing operations at this lower
rate.

Other applications include the need for an optimal
interpolation in computer tomography and efficient
multistage designs of narrowband lowpass filters.

The MATLAB Signal Processing toolbox may be used
to carry out a variety of operations associated with
sampling rate conversion and multirate processing. The
key functions are listed below,

1. decimate% resample data at a lower rate after low-
pass filtering

2. resample % change the sampling rate of a signal

3. interp % resample data at a higher rate using low-
pass interpolation

4. upfirdn % upsample, apply a specified FIR filter,
and downsample a signal

Use on line MATLAB help to find out more about
these functions. Following examples illustrate the use of
these functions.

2 Decimation

The basic operation required in decimation is the
downsampling of the high-rate signal into a low-
rate signal. MATLAB provides the function [y] =

downsample(x,D) that downsamples input array x into
output array y by keeping every Dth sample starting
with the first sample. An optional third parameter
“phase” specifies the sample offset which must be an
integer between 0 and (D-1). For example,

≫ x = [1,2,3,4,3,2,1]; y = downsample(x,2)

y =

1 3 3 1

downsamples by a factor of 2 starting with the first
sample. However,

≫ x = [1,2,3,4,3,2,1]; y = downsample(x,2,1)

y =

2 4 2

produces an entirely different sequence by down-
sampling, starting with the second sample (i.e., offset
by 1).

2.1 Example

Let x(n) = cos(0.125πn). Generate a large number of
samples of x(n) and decimate them using D = 2, 4, and
8 to show the results of decimation.
MATLAB provides the function y = decimate(x,D)

that resamples the sequence in array x at 1/D times the
original sampling rate. The resulting resampled array
y is D times shorter i.e., length(y) = length(x)/D.
Designing an ideal lowpass filter is not possible in the
MATLAB implementation; however, fairly accurate ap-
proximations are used. The default lowpass filter used
in the function is an 8th-order Chebyshev type-I low-
pass filter with the cutoff frequency of 0.8π/D. Using
additional optional arguments, the filter order can be
changed or an FIR filter of specified order and cutoff
frequency can be used.
We will plot the middle segments of the signals to

avoid end-effects due to the default lowpass filter in
the decimate function. The following MATLAB script
shows details of these operations

clc , clear all , close all

n = 0:2048; k1 = 256; k2 = k1 +32; m = 0:(k2 -k1)

;

Hf1 = figure (’units ’,’inches ’,’position ’

,[1,1,6,4], ...

’paperunits ’,’inches ’,’paperposition’

,[0,0,6,4]);

% (a) Original signal

x = cos (0.125* pi*n);

subplot (2,2,1);

1/4

MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO
INSTITUTE OF INFORMATION & COMMUNICATION TECHNOLOGIES

ADVANCED DIGITAL SIGNAL PROCESSING

Lab 10: Multirate Digital Signal Processing

Ha = stem(m,x(m+k1+1) ,’g’,’filled ’);

axis([-1 ,33 , -1.1 ,1.1]) ; set (Ha,’markersize ’ ,2);

ylabel (’Amplitude ’); title (’Original Sequence x

(n)’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

% (b) Decimation by D = 2

D = 2; y = decimate (x,D);

subplot (2,2,2);

Hb = stem(m,y(m+k1/D+1) ,’c’,’filled ’); axis

([-1 ,33 , -1.1 ,1.1]) ;

set (Hb ,’markersize ’,2); ylabel (’Amplitude ’);

title (’Decimated by D = 2’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

% (c) Decimation by D = 4

D = 4; y = decimate (x,D); subplot (2,2,3);

Hc = stem(m,y(m+k1/D+1) ,’r’,’filled ’); axis

([-1 ,33 , -1.1 ,1.1]) ;

set (Hc ,’markersize ’,2); ylabel (’Amplitude ’);

title (’Decimated by D = 4’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

xlabel (’n’);

% (d) Decimation by D = 8

D = 8; y = decimate (x,D); subplot (2,2,4);

Hd = stem(m,y(m+k1/D+1) ,’m’,’filled ’); axis

([-1 ,33 , -1.1 ,1.1]) ;

set (Hd ,’markersize ’,2); ylabel (’Amplitude ’);

title (’Decimated by D = 8’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

xlabel (’n’);

We observe that the decimated sequences for D = 2
and D = 4 are correct and represent the original sinus-
oidal sequence x(n) at lower sampling rates. However,
the sequence for D = 8 is almost zero because the lowpass
filter has attenuated x(n) prior to downsampling. Recall
that the cutoff frequency of the lowpass filter is set to
0.8π/D = 0.1π which eliminates x(n). If we had used the
downsampling operation on x(n) instead of decimation,
the resulting sequence would be y(m) = 1, which is an
aliased signal. Thus, the lowpass filtering is necessary.

3 Interpolation

An increase in the sampling rate can be accomplished
by interpolating new samples between successive values
of the signal. This process can be accomplished in two
steps. The first step creates an intermediate signal at
the high rate by interlacing zeros in between nonzero
samples in an operation called upsampling. In the second
step, the intermediate signal is filtered to “fill in” zero-
interlaced samples to create the interpolated high-rate
signal.

MATLAB provides the function [v] =

upsample(x,I) that upsamples input array x into
output v by inserting (I-1) zeros between input
samples. An optional third parameter, “phase,”
specifies the sample offset, which must be an integer

between 0 and (I-1). For example,

≫ x = [1,2,3,4]; v = upsample(x,3)

v =

1 0 0 2 0 0 3 0 0 4 0

0

upsamples by a factor of 2 starting with the first sample.
However,

≫ v = upsample(x,3,1)

v =

0 1 0 0 2 0 0 3 0 0 4

0

≫ v = upsample(x,3,2)

v =

0 0 1 0 0 2 0 0 3 0 0

4

produces two different signals by upsampling, starting
with the second and the third sample (i.e., offset by 1),
respectively. Note that the lengths of the upsampled
signals are I times the length of the original signal.

3.1 Example

Let x(n) = cos(πn). Generate samples of x(n) and in-
terpolate them using I = 2, 4, and 8 to show the results
of interpolation.
MATLAB provides the function [y,h] =

interp(x,I) that resamples the signal in array x

at I times the original sampling rate. The resulting
resampled array y is I times longer i.e., length(y) =

I*length(x). The ideal lowpass filter is approximated
by a symmetric filter impulse response, h, which is
designed internally. It allows the original samples to
pass through unchanged and interpolates between so
that the mean square error between them and their
ideal values is minimized. The third optional parameter
L specifies the length of the symmetric filter as 2*L*I+1,
and the fourth optional parameter cutoff specifies the
cutoff frequency of the input signal in π units. The
default values are L = 5 and cutoff = 0.5. Thus, if
I = 2, then the length of the symmetric filter is 21 for
the default L = 5.
We will plot the middle segments of the signals to

avoid end-effects due to the default lowpass filter in the
interp function. The following MATLAB script shows
details of these operations

clc , clear all , close all

n = 0:256; k1 = 64; k2 = k1 +32; m = 0:(k2 -k1);

Hf1 = figure (’units ’,’inches ’,’position ’

,[1,1,6,4], ...

’paperunits ’,’inches ’,’paperposition’

,[0,0,6,4]);

2/4

MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO
INSTITUTE OF INFORMATION & COMMUNICATION TECHNOLOGIES

ADVANCED DIGITAL SIGNAL PROCESSING

Lab 10: Multirate Digital Signal Processing

% (a) Original signal

x = cos (pi*n);

subplot (2,2,1);

Ha = stem(m,x(m+k1+1) ,’g’,’filled ’);

axis([-1 ,33 , -1.1 ,1.1]) ; set (Ha,’markersize ’ ,2);

ylabel (’Amplitude ’); title (’Original Sequence x

(n)’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

% (b) Interpolation by I = 2

I = 2; y = interp (x,I);

subplot (2,2,2);

Hb = stem(m,y(m+k1/I+1) ,’c’,’filled ’); axis

([-1 ,33 , -1.1 ,1.1]) ;

set (Hb ,’markersize ’,2); ylabel (’Amplitude ’);

title (’Interpolated by I = 2’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

% (c) Interpolation by I = 4

I = 4; y = interp (x,I); subplot (2,2,3);

Hc = stem(m,y(m+k1/I+1) ,’r’,’filled ’); axis

([-1 ,33 , -1.1 ,1.1]) ;

set (Hc ,’markersize ’,2); ylabel (’Amplitude ’);

title (’Interpolated by I = 4’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

xlabel (’n’);

% (d) Interpolation by I = 8

I = 8; y = interp (x,I); subplot (2,2,4);

Hd = stem(m,y(m+k1/I+1) ,’m’,’filled ’); axis

([-1 ,33 , -1.1 ,1.1]) ;

set (Hd ,’markersize ’,2); ylabel (’Amplitude ’);

title (’Interpolated by I = 8’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

xlabel (’n’);

We observe that the interpolated sequences for all
three values of I are appropriate and represent the ori-
ginal sinusoidal signal x(n) at higher sampling rates. In
the case of I = 8, the resulting sequence does not appear
to be perfectly sinusoidal in shape. This may be due the
fact the lowpass filter is not close to an ideal filter.

3.2 Example

Examine the frequency response of the lowpass filter
used in the interpolation of the signal in Example 3.1.
The second optional argument in the interp function

provides the impulse response from which we can com-
pute the frequency response, as shown in the following
MATLAB script.

clc , clear all , close all

n = 0:256; x = cos (pi*n); w = [0:100]* pi /100;

Hf1 = figure (’units ’,’inches ’,’position ’

,[1,1,6,4], ...

’paperunits ’,’inches ’,’paperposition’

,[0,0,6,4]);

% (a) Interpolation by I = 2, L = 5;

I = 2; [y1,h1] = interp (x,I); H1 = freqz (h1 ,1,w

); H1 = abs (H1);

subplot (2,2,1); plot(w/pi ,H1 ,’g’); axis([0,1,0,

I+0.1]) ; ylabel (’Magnitude ’);

title (’I = 2, L = 5’);

set (gca ,’xtick ’ ,[0,0.5,1]) ; set (gca ,’ytick ’

,0:1: I);

% (b) Interpolation by I = 4, L = 5;

I = 4; [y2,h2] = interp (x,I); H2 = freqz (h2 ,1,w

); H2 = abs (H2);

subplot (2,2,2); plot(w/pi,H2,’g’); axis([0,1,0,

I+0.2]) ; ylabel (’Magnitude ’);

title (’I = 4, L = 5’);

set (gca ,’xtick ’ ,[0 ,0.25 ,1]) ; set (gca ,’ytick ’

,0:1: I);

% (c) Interpolation by I = 8, L = 5;

I = 8; [y3,h3] = interp (x,I); H3 = freqz (h3 ,1,w

); H3 = abs (H3);

subplot (2,2,3); plot(w/pi,H3,’g’); axis([0,1,0,

I+0.4]) ; ylabel (’Magnitude ’);

title (’I = 8, L = 5’); xlabel (’\omega /\pi’,’

fontsize ’ ,10)

set (gca ,’xtick ’ ,[0 ,0.125 ,1]) ; set (gca ,’ytick ’

,0:2: I);

% (d) Interpolation by I = 8, L = 7;

I = 8; L = 7; [y4 ,h4] = interp (x,I,L); H4 =

freqz (h4 ,1,w); H4 = abs (H4);

subplot (2,2,4); plot(w/pi,H4,’g’); axis([0,1,0,

I+0.4]) ;

ylabel (’Magnitude ’);

title (’I = 8, L = 7’); xlabel (’\omega /\pi’,’

fontsize ’ ,10)

set (gca ,’xtick ’ ,[0 ,0.125 ,1]) ; set (gca ,’ytick ’

,0:2: I);

The first three frequency response plots are for L = 5
and, as expected, the filters are all lowpass with pass-
band edges approximately around π/I frequencies and
the gain of I. Also note that the filters do not have sharp
transitions and thus are not good approximations to the
ideal filter. The last plot shows the response for L = 7,
which indicates a more sharp transition, which is to be
expected. Any value beyond L = 7 results in an unstable
filter design and hence should be avoided.

4 Sampling Rate Conversion

Having discussed the special cases of decimation (down-
sampling by a factor D) and interpolation (upsampling
by a factor I), we now consider the general case of
sampling rate conversion by a rational factor I/D. Basic-
ally, we can achieve this sampling rate conversion by first
performing interpolation by the factor I and then decim-
ating the output of the interpolator by the factor D. In
other words, a sampling rate conversion by the rational
factor I/D is accomplished by cascading an interpolator
with a decimator. We emphasize that the importance
of performing the interpolation first and the decimation
second is to preserve the desired spectral characteristics
of x(n).

4.1 Example

Consider the sequence x(n) = cos(0.125πn) discussed in
Example 2.1. Change its sampling rate by 3/2, 3/4, and
5/8.

3/4

MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO
INSTITUTE OF INFORMATION & COMMUNICATION TECHNOLOGIES

ADVANCED DIGITAL SIGNAL PROCESSING

Lab 10: Multirate Digital Signal Processing

MATLAB provides the function [y,h] =

resample(x,I,D) that resamples the signal in ar-
ray x at I/D times the original sampling rate. The
resulting resampled array y is I/D times longer (or the
ceiling of it if the ratio is not an integer) i.e., length(y)
= ceil(I/D)*length(x). The function approximates
the anti-aliasing (lowpass) filter by an FIR filter, h,
designed (internally) using the Kaiser window. It also
compensates for the filter’s delay.
The length of the FIR filter h that resample uses is

proportional to the fourth (optional) parameter L that
has the default value of 10. For L = 0, resample per-
forms a nearest-neighbor interpolation. The fifth op-
tional parameter beta (default value 5) can be used to
specify the Kaiser window stopband attenuation para-
meter β. The filter characteristics can be studied using
the impulse response h.
The following MATLAB script shows the details.

clc , clear all , close all

n = 0:2048; k1 = 256; k2 = k1 +32; m = 0:(k2 -k1)

;

Hf1 = figure (’units ’,’inches ’,’position ’

,[1,1,6,4],...

’paperunits ’,’inches ’,’paperposition’

,[0,0,6,4]);

% (a) Original signal

x = cos (0.125* pi*n); subplot (2,2,1);

Ha = stem(m,x(m+k1+1) ,’g’,’filled ’); axis

([-1 ,33 , -1.1 ,1.1]) ;

set (Ha ,’markersize ’,2); ylabel (’Amplitude ’);

title (’Original Sequence x(n)’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

% (b) Sample rate Conversion by 3/2: I= 3, D =

2

I = 3; D = 2; y = resample (x,I,D); subplot

(2,2,2);

Hb = stem(m,y(m+k1*I/D+1) ,’c’,’filled ’); axis

([-1 ,33 , -1.1 ,1.1]) ;

set (Hb ,’markersize ’,2); ylabel (’Amplitude ’);

title (’Sample Rate I/D: I = 3, D = 2’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

% (c) Sample rate Conversion by 3/4: I= 3, D =

4

I = 3; D = 4; y = resample (x,I,D); subplot

(2,2,3);

Hc = stem(m,y(m+k1*I/D+1) ,’r’,’filled ’); axis

([-1 ,33 , -1.1 ,1.1]) ;

set (Hc ,’markersize ’,2); ylabel (’Amplitude ’);

title (’Sample Rate I/D: I = 3, D = 4’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

xlabel (’n’);

% (d) Sample rate Conversion by 5/8: I= 5, D =

8

I = 5; D = 8; y = resample (x,I,D); subplot

(2,2,4);

Hd = stem(m,y(m+k1*I/D+1) ,’m’,’filled ’); axis

([-1 ,33 , -1.1 ,1.1]) ;

set (Hd ,’markersize ’,2); ylabel (’Amplitude ’);

title (’Sample Rate I/D: I = 5, D = 8’);

set (gca ,’xtick ’ ,[0,16,32]) ; set (gca ,’ytick ’

,[-1,0,1]) ;

xlabel (’n’);

The original x(n) signal has 16 samples in one period
of the cosine waveform. Since the first sampling rate
conversion by 3/2 is greater than one, the overall effect
is to interpolate x(n). The resulting signal has 16×3/2 =
24 samples in one period. The other two sampling rate
conversion factors are less than one; thus, overall effect is
to decimate x(n). The resulting signals have 16× 3/4 =
12 and 16× 5/8 = 10 samples per period, respectively.

5 Exercise

1. A continuous time signal is characterized by the fol-
lowing function,

x(t) = A cos(2πf1t) +B cos(2πf2t)

(a) Using MATLAB, generate a discrete time equi-
valent of the signal. Assume a sampling fre-
quency of 1 kHz, f1 = 50 Hz, f2 = 100 Hz,
A = 1.5, B = 1.

(b) Interpolate the discrete time signal by a factor
of 4 using the interp command.

(c) Decimate the output of the interpolator in step
(b) by a factor of 4 using the decimate func-
tion.

(d) Plot the original, interpolated and decimated
discrete time signal.

4/4

	Introduction
	Decimation
	Example

	Interpolation
	Example
	Example

	Sampling Rate Conversion
	Example

	Exercise

